

CND 321: Advanced Analog Building Blocks

Course Description

The main objective of this course is to involve the students in in-depth design and simulation of the communication circuits, reference circuits, data conversion techniques, and DC-to-DC converters. The students will practice "hands-on" analog IC design using modern industrial CAD tools.

Prerequisites

Introduction to Analog Electronics

Learning Outcomes

After successful completion of this course, the student will be able to:

- 1. Have a top-level understanding of communication circuits including modulators, analog multipliers, mixers, PLLs, as well as D2A and A2D converters.
- 2. Design and simulate efficient reference circuits and LDOs.
- 3. Use modern advanced CAD tools to design and simulate analog electronic circuits.

Course Materials

Textbook:

- Paul R. Gray, Paul J. Hurst, Stephen H. Lewis, Robert G. Meyer, Analysis and Design of A Analog Integrated Circuit Design, 2nd Edition
- Tony Chan Carusone, David Johns, Kenneth Martin, analog Integrated Circuits, 5th Edition, Wiley.
- Asad A. Abidi, Paul R. Gray, Robert G. Meyer, Integrated Circuits for Wireless Communications. 1st Edition, Wiley-IEEE Press.
- Sergio Franco, Design with Operational Amplifiers and Analog Integrated Circuits. 4th Ed, McGraw-Hill Education. References:
- Material derived from the IEEE Journal, Transactions, and the International Solid-state Circuits Conference (ISSCC) proceedings.

Course Topics and Schedule

- Communication circuits
 - AM and FM receivers,
 - o Linear multipliers,
 - o Mixers
 - Phase-locked loops
- Data conversion circuits
 - Analog switches
 - Sample-and-hold circuits
 - o Digital-to-analog and analog-to-digital converters,
 - Voltage-to-frequency and frequency-to-voltage converters.
- Reference circuits
 - Important features: accuracy and stability
 - \circ Error definition
 - Voltage Noise
 - Line Regulation/PSRR
 - Load Regulation
 - Dropout Voltage
 - Supply Range
 - Supply Current
 - DC-DC converters
 - o Linear
 - o Buck
 - Switched Cap